Page affichée à 14:28:23
vendredi 19 avril 2024

Ce site n'utilise pas de cookie.
logo7 Dôme acoustique Compteur pour tout le site : 13 980 415

Nombre actuel de lecteurs : 78.
Faire
un don
par
PayPal
Le site de Dominique, un amateur passionné

 

2-6-3-2 : Le filtre à 24 dB, 4/5

Mise à jour : 31 octobre 2023

 

Les outils de calculs des filtres fonctionnent beaucoup mieux si vous avez choisis les HP dans les tables.
Pour les filtres avec HP relais, le choix préalable des HP est une nécessitée absolue.
Si vous arrivez sur cette page sans avoir choisi les HP, je vous invite à Aller faire votre choix des HP à filtrer, vous arriverez au chapitre "Impédance à la fréquence de coupure" ou vous aurez à choisir le HP de graves, puis le filtre et le tweeter deux chapitres après.

Avant d'utiliser les formules ou les résultats de calculs de ce chapitre, je considère que vous avez pris connaissance du chapitre "Les limites du calcul des filtres passifs", et que vous avez compris la confiance relative qu'il faut avoir dans les résultats.
Les calculs effectués sont justes en faisant l'hypothèse que les HP sont assimilables à des résistances pures, ce qui est loin d'être le cas en pratique.

L'idée que le même filtre passif peut convenir à plusieurs haut-parleurs est totalement fausse : Entre l'impédance à la fréquence de coupure qui varie avec l'inductance de la bobine mobile, les corrections de courbe de réponse intégrée au filtre (et non calculable ici), les atténuations différentes d'un HP à l'autre, les filtres sont toujours différents lorsqu'ils sont bien au point.

Les outils de ce site sont des calculateurs, les simulateurs sont beaucoup plus précis mais demandent d'avoir mesurer la courbe de réponse et de phase acoustique d'un coté, la courbe d'impédance et de phase électrique de l'autre, les HP montés dans leur enceinte définitive, pour pouvoir travailler.
J'insiste "lourdement", avec un calculateur vous devez finir la mise au point à l'écoute.

Le chapitre "Mise au point des filtres" vous aidera à passer de la théorie à la pratique.

 

Les filtres à 2 voies à 24 dB/octave.

Filtre à 24 dB/octave Linkwitz Riley :

La réponse dans l'axe et en coïncidence sont pratiquement plate, les délais de phase et de groupe ont un petit accident, le signal carré est correct, pas de décalage des HP, un bon filtre facile à utiliser si vous avez besoin de pentes fortes.
Dans son livre "Enceintes acoustiques & Haut-parleurs", Vance Dickason écrit que c'est certainement le meilleur filtre pour un tweeter.

2v24link.png

 

Filtre à 24 dB/octave Butterworth :

Il ne faut pas couper les décibels en 4, l'accident sur la courbe de réponse dans l'axe et en coïncidence ne dépasse pas 0.5 dB.
Le décalage des fréquences de coupure est celui proposé par Vance Dickason dans son livre "Enceintes acoustiques & Haut-parleurs".
Le décalage retenu est celui qui me semble être le meilleur, c'est assez subjectif dans ce cas.
Le filtre Linkwitz Riley est un tout petit peu meilleur, mais c'est à écouter en pratique.

2v24butt.png

 

Filtre à 24 dB/octave Bessel :

Il est visiblement moins bon que le filtre Linkwitz Riley ou le Butterworth.
Il y a un décalage des fréquences de coupure, dans un sens qui peut sembler irrationnel dans le DCX.

2v24bess.png

 

Filtre mixte à 24 dB/octave :

JMB me propose une autre solution de filtre à deux voies à pentes raides, version étudiée par Jean Michel Le Cleac'h, et reprise par plusieurs internautes :

Outre les pentes plus accrues, cette version offre la plus grande linéarité dans l'axe et aussi la zone assimilable à une ligne à retard la plus étendue de tous les modèles de filtre quasi optimal, avec une variation du délai de phase de seulement 12 mm en comparaison normalisé ( jusqu'à 4 kHz , deux voies, Fc = 1 kHz ) alors que le 3/3 de JMLC est vers 18 mm.
Seule petite faiblesse relative étant la réponse en coïncidence.
Ce modèle est AMHA à signaler et à essayer s'il y a nécessité de limiter la zone de recouvrement des HP.

jmlc-24-24.png

 

2-6-7-4 : Choix des selfs :

Mise à jour : 7 novembre 2023, Antimode 11.

 

Selfs à air ou selfs sur noyau métallique ?

Cette copie d'un courriel de Jean-Claude TORNIOR illustre parfaitement l'intérêt d'utiliser des selfs sur noyau métallique.
Outre l'aspect faible résistance interne, l'aspect prix est lui aussi plus que très intéressant.
Ce courriel est recopié ici avec l'accord écrit de son auteur, dans le plus strict respect des Règles déontologiques du site.

Bonjour Dominique,

Je me suis permis de me balader un peu sur votre site et j'ai constaté à la vision de votre "caisse de selfs" qu'il n'y avait que des selfs à air.
Je me permets, à ce sujet, de vous apporter quelques réflexions personnelles.

Il est en effet d'usage dans le "Monde Audiophile" de considérer que les selfs à air sont la panacée, au même titre que le fil de LITZ ( qui n'a pas été créé par le compositeur !... Hum...), les conducteurs monobrin, le fil d'argent et bien d'autres fantômes qui trouvent leurs sources dans une certaine logique de bazar dont on ne connaît pas précisément les sources.

En ce qui concerne les selfs, cette réputation découle d'une époque ou les matériaux ferreux utilisés avaient des propriétés médiocres qui faisaient que l'on pouvait les saturer lors de fortes puissances avec l'incidence d'une dérive des valeurs de l'inductance à ces fortes puissances.
Ce n'est plus le cas aujourd'hui avec l'utilisation de plaques de noyaux en mumétal ou en ferrite.
Depuis de nombreuses années, de très sérieux constructeurs utilisent exclusivement des selfs à noyaux (CABASSE, KLIPSCH, KEF, etc.).
Ces selfs à noyaux permettent surtout d'obtenir une valeur d'inductance plus pure, car non pervertis par la résistance du conducteur, en nécessitant moins de longueurs de câble.

  • La première conséquence est la possibilité de filtrages plus efficaces.
  • La deuxième conséquence est la possibilité d'utiliser des conducteurs de moindre section, ce dont nous connaissons l'influence bénéfique, de par notre métier, tout en conservant une résistance moindre.

Cette faible résistance en série d'une self de grave procurera un parfait amortissement du haut-parleur et par conséquent de magnifiques graves biens définis.
Le rendement sera aussi amélioré

Pour ma part, sur la "JCT Héritage", je n'utilise que des selfs à noyaux en ferrite avec du fil de 1,4mm en dessous de 150 Hz, pour une résistance totale de 0,2 ohms.
Pour les selfs de moyenne fréquence, le diamètre est de 0,8mm (maxi) pour une résistance inférieure à 0,5 ohms.
Ces selfs à Q élevé, utilisées en conjonction avec des condensateurs de haute qualité, peuvent créer des surtensions qu'il est toutefois facile d'amortir par une résistance ajustée, placée en série sur le composant relié à la masse.
Cette configuration vous permet de conserver le minimum de résistance en série avec le transducteur.
Pour exemple, si vous réalisez une cellule de grave pour le haut-parleur basse, vous placerez la self en série sur le haut-parleur et vous amortirez le condensateur à la masse (si c'est nécessaire) par une faible résistance en série ajustée pour amortir la surtension.

Encore bravo pour l'intérêt de votre site.
Jean-Claude TORNIOR

 

À gauche, sans la résistance d'amortissement, à droite avec la résistance Ra (sous C3) d'amortissement de la surtension de la self.

filtre_amorti.jpg
 
image362.jpg
 
image363.jpg

 

Visualiser, et calculer le filtre passif à 24 dB :

Certain filtres demandent une correction des fréquences de coupure et un délais.
Les corrections, si elles sont nécessaires, vous seront proposées chapitre suivant.
Les valeurs proposées dans ce chapitre participent aux calculs des valeurs corrigées.
Un exemple :
Si un filtre demande un délais de 96 mm, et que vous entrez un délais de 2 mm dans ce chapitre, le calcul sera fait avec un délais de 96 + 2 = 98 mm.
Si vous entrez -2 mm dans ce chapitre, le calcul sera fait avec 96 - 2 = 94 mm.
La méthode est rigoureusement la même pour les fréquences de coupure, l'outil de calcul est fait pour vous simplifier le plus possible les choses.

Les meilleurs résultats à l'écoute sont obtenus avec une mise en phase par recul du tweeter.
Le délais, s'il est nécessaire, vous sera proposé page suivante.
Si vous choisissez "Sans recul du tweeter", le calcul page suivante ajoutera un délais de mm sur le grave, et mettra le délais du tweeter à 0 mm.
Le délais du grave est modifiable ci-dessous dans le champs "Délais ou recul théorique du grave".
Vous verrez le résultat de ce choix sur la courbe de réponse.
Certain filtres sont très sensible, d'autres moins.

Fréquence de coupure minimale du tweeter supérieure à 20.5 * Fs.
Ce sera la valeur proposée par défaut, si vous pensiez couper plus bas.
Si vous n'êtes pas un expert ne coupez pas plus bas, choisissez plutôt un autre tweeter.

Coefficient Zeta et choix du filtre : 
Taille des selfs : 
Mise en phase par recul du tweeter : 
 
HP de graves :   Non défini
Fréquence de coupure du filtre passe bas en Hz
Délai ou recul théorique du grave en mm
Branchement du grave : 
Impédance à la fréquence de coupure
du filtre passe bas en Ohms. Rrc
Re du HP passe bas en Ohms
Sensibilité du HP passe bas en dB/2.83V/m
 
Puissance du HP de l'ampli en W
 
Tweeter ou compression de médium aigu :   0 PAS DE MARQUE -----
Fréquence de coupure indiquée par le fabricant :   20 Hz, à 12 dB/octave.
Fréquence de coupure Conseillé :   20 Hz, à 24 dB/octave.
Fréquence de coupure du filtre passe haut en Hz
Délai ou recul théorique du tweeter en mm
Branchement du tweeter : 
Impédance à la fréquence de coupure
du filtre passe haut en Ohms
Entrez R6 du filtre passe haut en Ohms
Entrez C6 du filtre passe haut en uF
Entrez L6 du filtre passe haut en mH
Sensibilité du HP passe haut en dB/2.83V/m

 

 

Les filtres à 24 dB :

plan du filtre passe bas et passe haut à 24 dB/octave

 

S'il est possible de faire des filtres passifs à 24 dB par octave, je ne vous le recommande pas.
Si vous avez réellement besoin de cette pente, prenez un filtre actif.
Il y a 6 types de filtre à 24 dB par octave dans le livre de Vance Dickason, et 3 dans mon filtre actif DCX 2496 :

  • Linkwitz Riley.
  • Bessel.
  • Butterworth.

Les haut-parleurs filtrés à 24 dB/octave se branche théoriquement en phase, comme pour le filtre à 6 dB/octave.
Le raccordement se fait à -6 dB pour le filtre Linkwitz Riley, et a -3 dB pour le Butterworth.

 

Bosses dans la courbe de réponse :

Je ne calcule pas ici la sommes des filtres passe haut et passe bas, pour la bonne raison que je ne faits pas entrer la phase qui varie avec la fréquence pour chaque filtre.
Sur la courbe de réponse, il y a parfois une bosse dont le résultat pratique est le suivant :

  • Filtre Butterworth : Bosse de +3 dB à la fréquence de coupure.
  • Filtre Bessel : Bosse de +1.2 dB à la fréquence de coupure.
  • Filtre Linkwitz Riley : Plat à la fréquence de coupure.

Une solution pour éviter la bosse dans le cas du filtre Butterworth et de couper plus tôt le passe haut avec un facteur de 1.13 et plus tard le passe bas avec un facteur de 1.13.
Pour une coupure à 1000 Hz, fréquence de coupure du passe bas à 1000 / 1.13 = 885 Hz.
Pour une coupure à 1000 Hz, fréquence de coupure du passe haut à 1000 * 1.13 = 1130 Hz.
Ce sont bien sur des valeurs théorique, à vérifier en pratique lors de la mise au point à l'écoute.

 

Filtre à 24 dB dans les simulations numériques :

Dada du forum AUDAX.

Le module de la fonction de transfert d'un filtre de type Butterworth à 24 dB/octave répond a cette relation :

  • Passe bas : IHI = 1 / racine( 1 + ( F / Fo )8 )
  • Passe haut : IHI = ( Fo / F )4 / racine( 1 + ( Fo / F )8 )

L'atténuation en dB est alors donne par G = 20 x LOG( IHI )
Ce sont ces équations qui sont utilisées pour le tracé des courbes d'atténuation du filtre Butterworth à 24 dB/octave.

 

Bruno du forum AUDAX :

Le filtre Linkwitz Riley du 4e ordre correspond a deux "Butterworth" du second ordre en cascade.
Le zeta est : racine(2) / 2 = 0.707.

  • PASSE BAS : IHI = ( 1 / racine( ( 1 - ( F / F0 )2 )2 +  (2 * zeta * F / F0 )2 ) ) x ( 1 / racine( ( 1 - ( F / F0 )2 )2 +  (2 * zeta * F / F0 )2 )
  • PASSE-HAUT : IHI =
    ( ( F / F0 )2 / racine( ( 1 - ( F / F0 )2 )2 + ( 2 * zeta * F / F0 )2  ) ) x ( ( F / F0 )2 / racine( ( 1 - ( F / F0 )2 )2 + ( 2 * zeta * F / F0 )2  ) )

L'atténuation en dB est alors donne par G = 20 x LOG( IHI )
Ce sont ces équations qui sont utilisées pour le tracé des courbes d'atténuation du filtre Linkwitz Riley à 24 dB/octave.

 

Un grand merci pour votre visite. --- Retour direct en haut de la page ---

Logo Dôme acoustique

Un grand-père facétieux disait à ses petits enfants que le grand truc blanc tout en haut du Puy-de-Dôme était un thermomètre géant : Quand il deviendra tout rouge il faudra vite se sauver, parce que le volcan va se réveiller !!!

Malgré les apparences, ce site internet n'est que celui d'un amateur passionné auvergnat.
"Amateur" doit être compris dans le sens "non professionnel", dans l'aspect financier de l'approche : Je ne vis pas des revenus de cette passion.
"Amateur" doit être compris dans le sens ou rien ne m'oblige à vous répondre, si vous êtes désagréable. C'est rare, mais le cas arrive de temps en temps.

Il y a un savoir-vivre élémentaire qui consiste à demander l'autorisation avant de reprendre tout ou partie de ce qui est écrit dans ce chapitre.
Je vous donnerai l'accord, demandez-le simplement pour être en règle. Sont exclues les demandes extravagantes, les demandes de copie de ma base de données haut-parleurs.


Contrôle de validation W3C du code HTML 5 de la page, copiez l'adresse de la page avant de cliquer sur le lien.
Contrôle de validation W3C des CSS de la page, copiez l'adresse de la page avant de cliquer sur le lien.
Ce sont deux outils de contrôle pour le webmaster du site Dôme Acoustique, c'est inutile pour les utilisateurs.
Avoir le lien dans chaque page est plus simple pour les retrouver.