Accueil Table des
matières
Forum Compteur pour tout le site : 3 573 935
Nombre actuel de lecteurs : 20
Base HP
Calculs enceintes
Moteur de
recherche
Lexique
Le site
Contact
Notions
techniques
Baffles et
enceintes
Le filtrage
Calculs des filtres
Réalisations
et plans
Autour des HP
et enceintes
Mon système Hors sujets

image121-4.jpg


Enceinte acoustique close

Mise à jour : 2010-11-21.


Les haut-parleurs électrodynamiques rayonnent par les deux faces de leur membrane, on appelle cela un fonctionnement en dipôle.
Lors du mouvement de la membrane vers l'avant, il y a la création d'une onde de pression sur la face avant du haut-parleur.
L'onde créée par la face arrière est alors une onde de dépression.
Si on ne fait rien ces deux ondes vont s'annuler, et il n'y aura pas création de son.
Une expérience très simple, pour vérifier cet aspect physique, consiste à alimenter un haut-parleur de graves (donc capable de reproduire des fréquences graves) posé nu sur une table, avec un signal sinusoïdale de 50Hz : Si l'on perçoit bien les mouvements de la membrane, le son émis est très faible.

Ce court-circuit acoustique dû au fonctionnement en dipôle impose au minimum la mise en place d'un écran qui sépare les ondes avant et arrières.
Le court-circuit acoustique cesse lorsque les dimensions de l'écran qui sépare les ondes avants et arrières sont suffisamment grandes devant la longueur d'onde du son le plus grave que l'on souhaite reproduire.

Le temps mis par les vibrations de l'air, qui se propagent à une vitesse C (343.4 m/s à 20° C) pour contourner un écran plan circulaire de diamètre D, est t = D/c.
Les pressions s'équilibrent et se neutralisent (il n'y a plus de son émis) lorsque ce temps t coïncide avec la période T ( inverse de la fréquence f) du signal sonore T = 1/f = D/c.

Connaissant la fréquence la plus basse à reproduire, une bonne séparation entre les ondes avant et arrière ne peut être obtenue que dès lors que D > c/f.
Ceci impose les dimensions minimales de l'écran en fonction de la fréquence la plus basse que l'on souhaite reproduire.

Le tableau ci-après donne la valeur de la longueur d'onde pour quelques fréquences de 20 à 10 000 Hz. La vitesse du son dans l'air est pris égal à 340 m/s. Les longueurs d'onde sont indiquées en mètres :

Fréquence Long. Onde Fréquence Long. Onde
20 17,00 1 000 0,34
50 6,80 2 000 0,17
100 3,40 5 000 0,068
200 1,70 10 000 0,034
500 0,68 20 000 0,017

On voit d'après ce tableau que pour un rayonnement effectif jusqu'à la fréquence la plus basse théorique de 20 Hz, il faudrait théoriquement un écran d'au moins 17 m de diamètre.

On voit aussi que pour une fréquence de 1000Hz, il suffit de monter le haut-parleur de médium dans un écran de 34cm de diamètre pour éviter le court-circuit acoustique.
Pour reproduire 5 000 Hz on n'a plus besoin que d'un écran de 6,8 cm ce qui ressemble aux dimensions hors tout d'un haut-parleur d'aigus qu'on montera sans baffle pour échapper aux phénomènes de diffractions.
On conçoit alors l'inconvénient théorique d'un écran pour l'usage domestique des haut-parleurs de grave d'où l'intérêt par exemple de neutraliser complètement les effets de l'onde arrière en mettant le haut-parleur dans un coffret clos.

Le paragraphe suivant présente les principes de la réalisation et de la modélisation des enceintes closes.


Réalisation des enceintes closes :

Un haut-parleur électrodynamique se caractérisent par 5 caractéristiques physiques fondamentales (2 électriques et 3 mécaniques) que l'on mesure facilement.

Les deux caractéristiques électriques sont :

  • La résistance Re de sa bobine mobile
  • L'inductance Le de sa bobine mobile

Les trois caractéristiques mécaniques sont :

  • La masse M de son équipage mobile
  • La compliance CMS de la suspension de la membrane (spider et suspension périphérique), qui représente l'effet ressort ( la compliance est l'inverse de la raideur elle s'exprime en m/N) de cette suspension.
  • Les pertes mécaniques que l'on appelle RM (pertes par frottement internes des suspensions, pertes par le rayonnement acoustique de la membrane (et oui c'est assimilable à une perte, puisque le rayonnement acoustiques est bien quelque chose que perd le haut-parleur au profit de son environnement extérieur, en l'occurrence l'air ambiant sous la forme d'un émission sonore), etc.)

D'un point de vue physique, un coffret clos par le comportement de l'air qu'il contient lors des mouvements d'avant en arrière de la membrane, va se comporter comme un ressort supplémentaire (de raideur K) qui s'ajoute au ressort de la suspension du haut-parleur.

L'effet ressort de l'air dans le coffret n'est pas dans l'absolu une fonction linéaire du déplacement de la membrane.
Mais pour les petits signaux et dans une plage de fonctionnement ou  x * Sd << VB, c'est à dire quand x le déplacement de la membrane multiplié par la surface projetée Sd du haut-parleur ne dépasse pas 2 à 5% de VB, on trouve par un développement approché de l'expression théorique que K =
g * Sd / VB . K peut donc être considéré comme constant dans l'hypothèse de mouvements de la membrane pas trop importants. On conçoit bien que l'air contenu dans un petit coffret de volume VB1, aura dans la pratique une comportement plus raide (K1>K2), que l'air contenu dans un grand coffret de volume VB2. L'air contenu dans le coffret va ainsi agir sur les mouvements de la membrane en s'y opposant d'autant plus que le volume VB est petit et réciproquement.

Dans la pratique la réalisation d'une enceinte close est quelque chose de relativement simple que l'on peut décomposer en deux étapes :

  • La première étape a pour but de mettre le haut-parleur dans un coffret rigoureusement clos (étanchéité) et contenant du matériel absorbant pour annuler où amortir le mieux possible l'onde arrière du haut-parleur, donc éviter par cette ablation le court-circuit acoustique latent et minimiser les effets pervers de cette onde acoustique arrière (résonance de coffret, etc.),
  • La deuxième étape consiste à faire le choix d'un volume judicieux VB. C'est à dire choisir la bonne raideur K qu'apportera l'air contenu dans le coffret et qui viendra (comme déjà vu) s'ajouter à la raideur (1/CMS) existante de la suspension de la membrane pour atteindre le fonctionnement visé par le concepteur (cahier des charges).

Pour un haut-parleur donné, il n'y a donc ainsi qu'un seul paramètre de liberté lorsque l'on souhaiter optimiser une enceinte close : c'est la valeur optimale de K et donc du volume VB qui en découle.

Dans la pratique l'étude d'une enceinte acoustique close est ramenée à l'étude d'un filtre électrique passe-haut. On préfère concrétiser alors par convention (théorie des filtres) ce seul paramètre de liberté nécessaire à l'optimisation d'une enceinte close et son HP, par le coefficient de surtension total QTC. C'est d'ailleurs un paramètre très astucieux pour décrire simplement la réponse du haut-parleur aux basses fréquences.

Optimiser une enceinte close revient ainsi à rechercher le QTC qui répond le mieux au cahier des charges, c'est à dire à l'objectif recherché (meilleur rendement ?, puissance maximale admissible ?, forme de la réponse dans les graves ?, etc.).


Modélisation des enceintes closes

Le comportement acoustique d'un haut-parleur monté dans un coffret clos sera très voisin en terme de modélisation (avec l'effet de court-circuit acoustique en moins) du comportement qu'aurait le même haut-parleur nu. Seule la raideur qui s'oppose aux mouvements de l'équipage mobile est différente. On peut prédire que la fréquence de résonance du haut-parleur monté dans un coffret clos sera plus haute que celle du même haut-parleur nu.

Avant d'aborder la modélisation d'une enceinte close, le paragraphe suivant propose un simple rappel sur les principes généraux que l'on utilise depuis les travaux de THIELE et SMALL, pour modéliser les haut-parleurs et leurs montages dans des enceinte acoustiques.


Le haut-parleur est un transducteur

Le haut-parleur est un transducteur, car il traduit des signaux électriques, en un mouvements mécaniques (ceux de la membrane) puis en signaux acoustiques (c'est ce qu'on entend).

Pour ce faire, celui-ci est constitué d'un moteur électrique ( = aimant + bobine mobile) qui est couplé (la bobine mobile est collée physiquement à la membrane) à un système mécanique (la membrane + suspension). Le système mécanique est couplé au système acoustique, c'est à dire à l'air ambiant : c'est le rayonnement de la membrane considéré comme un piston infiniment rigide. Lord Rayley a jeté les bases et résolu l'équation différentielle du rayonnement acoustique des pistons rigides dans son livre " THEORY OF SOUND ".

Pour revenir à la modélisation, on part d'un signal électrique (délivré par l'amplificateur), ce signal électrique (c'est la première transformation) est d'abord converti en un mouvement de la membrane grâce au moteur (cette conversion a généralement un bon rendement). La membrane émet par son mouvement alternatif une onde acoustique dans l'air ambiant, c'est la deuxième transformation. Cette deuxième transformation est généralement d'un rendement faible puisqu'on parle pour une enceinte close d'un rendement maximal de 3%.

L'idée essentielle de la modélisation (en s'appuyant sur les analogies électro - mécanique - acoustiques d'Olson et de Beranek) c'est de ramener l'étude des phénomènes électriques, mécaniques et acoustiques à un seul schéma électrique unifié et équivalent (travaux de THIELE et SMALL).

Quelque chose d'un peu compliqué au départ se transforme ainsi en l'étude d'un banal filtre électrique composé de résistances R, d'inductances L, et de capacités C. On sait parfaitement résoudre ce genre de problème grâce à la théorie des filtres.


L'étude des filtres

Un haut-parleur nu ou un haut-parleur monté dans un coffret ont un comportement en fréquence qui correspond à celui d'un filtre passe-haut d'ordre 2. C'est la même chose que la capacité en série et l'inductance en parallèle que l'on utilise pour composer le filtre passe-haut qui va attaquer un médium ou un tweeter dont on suppose l'impédance constante de valeur R (Ohm).

On peut expliciter la fonction de transfert normalisée de ce type de filtres électriques suivant deux types de modélisation.

La première manière pour résoudre ce problème de filtre, consiste à poser
LC w02 = 1 ; Q = Lw0 / R ; w / w0 = x.
Tout calcul fait on aboutit à une fonction de transfert T(x) dont l'expression mathématique est la suivante :
T(x) = x2/(1 + ((1-2Q2)/Q2)x2 + x4)0,5. Q est appelé facteur de surtension ou encore facteur de qualité.

C'est donc x2 au numérateur divisé par la racine carrée d'une fonction F(x) de degré 4. La racine carrée de quatre étant deux, le dénominateur est donc une fonction de degré 2.

F(x) = [1 + ((1-2Q2)/Q2)x2 + x4]0,5

Cette fonction F(x), selon les valeurs que prend le paramètre Q, peut être une fonction de Butterworth notée B2 (Q = 0,707), une fonction de Chebychev 0,1dB (Q=???), de Chebychev 0,5 dB (Q = ???), une fonction de Bessel (Q = 0,577), etc., d'ou le nom des charges acoustiques les plus classiquement utilisées.

Cette première manière est un peu compliquée par sa formulation mais est intéressante si on veut par exemple tracer sur un tableur les courbes de réponse en fréquence en fonction du rapport w /w0) où si l'on préfère (f /f0) ; On trace généralement ces courbes pour les valeurs classiques de Q, à savoir ½, 1 /racine(2) ; 1 ; Racine(2) ; 2. (voir annexe).

La deuxième méthode consiste à adopter la notation utilisée pour les nombres complexes en posant p = j  avec j le nombre imaginaire dont le carré est égal à -1 (j2 =-1 ; on l'appelle i en mathématique mais les physiciens l'ont toujours appelé j, à savoir pourquoi ?).
Parce que le i des mathématiciens risque d'être confondu avec le i du courant...

Tout calcul fait, on arrive à l'expression de la fonction de transfert normalisée (normalisée veut tout simplement dire que l'on se débrouille toujours pour avoir 1 comme facteur multiplicatif du terme de degré le plus élevé du polynôme apparaissant au dénominateur ; dans notre cas, c'est à dire l'étude des filtres du deuxième ordre, c'est le coefficient devant le terme p2 que l'on doit rendre égal à 1 par une petite astuce mathématique simple). L'expression de la fonction normalisée est la suivante : G(j/jo) = p2/(1 + 1/Q *p + p2)

C'est donc p2 divisé par la racine carré d'un polynôme P(p) de degré 2 dont l'expression mathématique est :
P(p) = 1 + 1 /Q* p + p2

Ce polynôme P(p) n'est qu'une formulation alternative de la fonction F(x) précédente. Il peut être un polynôme de Butterworth noté B2, un polynôme de Chebyshev 0,1dB noté T2 (k=0,1), Chebyshev 0,5 dB noté T2 (k=0,5), un polynôme de Bessel, noté B2, etc. Ces familles de polynômes ont chacune leurs caractéristiques propres (pente de la coupure, déphasage, rotation de phase, réponse aux impulsions, etc. ) donc des avantages et des inconvénients.

Pour les filtres de séparations des voies d'une enceinte, on utilise le plus couramment des filtres de type Butterworth, et des filtres de Linkwicz-Riley (utilisant les polynômes de Linkwicz-Riley). Il est d'ailleurs curieux que personne n'ait jamais avoué utiliser un filtre de type Linkwicz-Riley pour optimiser une charge de haut-parleur. Ce type de filtre a pourtant d'évidentes qualités. Il est souvent utilisé dans les filtres d'aiguillage des haut-parleurs qui composent une enceinte multivoies, même s'il ne correspond pas à la meilleure réponse de niveau dans les graves (encore une affaire de marketing ! ? quand on parle d'enceintes).

Nota : pour les enceintes de type basse reflex le polynôme qui apparaît au dénominateur de la fonction de transfert normalisée est un polynôme de degré 4, d'où les appellations B4, T4, QB3, HM39, HM50, etc.

Valeurs de Q en fonction du polynôme choisi

Type de réponse Notation Valeur de Q
Linkwicz-Riley LR 2 0,500
Bessel D 0,577
Butterworth B2 0,707

Pour un coffret clos, si on s'arrange pour obtenir un QTC = 1,1, on démontre mathématiquement que cela correspond au rendement maximal et à la puissance maximale que peut produire un haut parleur monté dans un coffret clos (voir COURBE2).
Le pic de réponse dans les basses n'est pas trop important (<2dB)
.

On ne peut pas choisir n'importe quel haut-parleur pour concevoir une enceinte close. Le haut-parleur doit posséder un VAS suffisamment grand, et un Qts pas trop faible pour ne pas tomber dans des volumes d'enceintes VB trop petit. En principe pour faire une enceinte close on choisit un haut-parleur tel que Fs/Qes< 50. Ne pas trop s'inquiéter (sauf si vous avez déjà acheté les deux haut-parleurs), le calcul pratique ci-après vous donnera des résultats impossibles ou peu raisonnables si le Haut-parleur n'est pas adapté à une charge close (les constructeurs sérieux indiquent le type d'utilisation des haut-parleurs)


Calcul d'un enceinte close

On connaît les paramètres Fs, Qts, CMS (où VAS)  du haut-parleur
On choisit le QTC que l'on souhaite toujours supérieur à QTS ( 0,5 < QTC < 2 généralement ).
On calcule a = ( QTC / Qts )2 - 1
On calcule le volume intérieur de l'enceinte VB = VAS / a

VB est le volume de calcul.
Le volume a réaliser en pratique sera un peu plus faible, car il faux tenir compte du volume de l'absorbant placé à l'intérieur.
Si l'on considère que l'on met 15% du volume VB en absorbant (il ne faux pas en mettre de trop pour ne pas étouffer le son), et puisque l'absorbant augmente le volume virtuel de l'enceinte de 20% de son volume, le volume pratique de l'enceinte est :
VB - 0.15 * VB * 0.2 = VB * ( 1 - 0.15 * 0.20 ) = VB * 0.97.
Ce sont les valeurs par défaut lors des calculs effectués en base de données, si ce n'est que vous pouvez changer vous même le volume de l'absorbant utilisé.

Pour rappel, si les données du constructeurs ne donnent pas le VAS :
VAS = C2 * Ro * CMS * Sd2, avec C = 343.707 m/s et Ro = 1.194 Kg/m3 à 20°C, 50 m d'altitude et 40% d'humidité relative.

La fréquence de résonance du haut-parleur dans son coffret FC est donnée par
FC = Fs * ( VAS / VB + 1 )0.5
La fréquence FC est supérieure à Fs, ce qui est intuitif.
Que l'on peut écrire aussi avec a, soit FC = Fs * ( a + 1 )0.5

La fréquence de coupure à mi-puissance vaut :
F-3dB = F3 = FC *  RACINE[ ( QTC-2 - 2 + RACINE [ ( QTC-2 - 2 )2 + 4 ) ] / 2 ]

En php :
$f3 = $fc*sqrt((pow($qtc,-2)-2+sqrt(pow(pow($qtc,-2)-2,2)+4))/2);
C'est la formule utilisée tel quel dans la base de données : J'ai eu du mal à la rentrer correctement.
Je vous garanti l'exactitude de cette formule écrite en php. C'est la formule 9.85 du livre de Mario ROSSI.

Si on pose A = ( 1 / QTC2 ) -2
Alors F-3dB = F3 = FC * RACINE[ ( A + RACINE[ A2 + 4 ] ) / 2 ]

La valeur du pic en dB (il n'existe que si QTC > 0,707) de la réponse dans le grave se calcule ainsi :
Pic dB = 10 * LOG [ QTC4 / ( QTC2 - 0,25 ) ]

Ce pic correspond à la fréquence Fpic = [ 1 / (1 -  1 / 2 / QTC2 )0.5 ] * FC


Construction d'une enceinte close

Le volume de l'enceinte close étant calculé, il ne reste plus qu'à construire le coffret dont le volume net intérieur sera égal à VB. Il faut en effet tenir compte des volumes pris à l'intérieur de l'enceinte par la partie arrière du haut-parleur, ainsi que tous les autres dispositifs qui se trouvent dans le coffret (filtre de séparation, bornes encastrées pour le raccordement à l'amplificateur, tasseaux de renforcement, etc. ).

D'après la théorie, la forme idéale pour un tel coffret, serait la sphère mais celle-ci est de construction difficile. Si le choix se porte vers un parallélépipède, il faut absolument éviter la forme d'un cube celui-ci étant générateur par sa parfaite symétrie de modes propres de vibration des ondes acoustiques à l'intérieur du coffret qui polluent le son émis par la face avant de la membrane. A ce sujet il ne faut jamais oublier qu'une membrane de haut-parleur est transparente d'un point de vue acoustique. Avec le désavantage d'un construction plus difficile il vaut mieux privilégier les parois non parallèles.

Pour la construction d'un coffret parallélépipédique, il faut choisir de bonnes proportions. Le tableau ci-après donne quelques proportions jugées bonnes de manière empirique et pour le point de vue acoustique :

X Y Z
1.000 1,202 1,435
1.000 1,260 1,587
1.000 1,401 1,863

Pour l'amortissement, on utilise de la laine naturelle, minérale, de la mousse synthétique. La laine de verre n'est pas recommandée à cause de ses effets sur la santé (micro particules irritantes que l'on peut inhaler).

Les parois de l'enceinte doivent être les plus rigides possibles et ceci même pour les petits coffrets. On peut percer un petit trou pour permettre la décompression du volume intérieur et avoir une pression statique à l'intérieur du coffret égale à celle de l'air ambiant.

La mesure de l'impédance du haut-parleur monté dans l'enceinte permettra de vérifier que les calculs et la construction ont été bien menés (mesure de FC comparée à Fs, etc.).


Courbe N°1

Ce sont les courbes classiques que l'on voit sur tous les livres traitant d'enceintes acoustiques. Le rapport F/FC vaut 1 quand la valeur de f est égale à celle de FC.
Je n'aime absolument pas cette courbe, et préfère de loin la courbe N°3.

Les différentes courbes que l'on voit correspondent chacune à un haut-parleur théorique différent chaque fois du précédent ou du suivant. Tous ces haut-parleurs ont une seule caractéristique commune : la fréquence de résonance FC du système {Haut-parleur+Coffret} est chaque fois identique et ce pour chaque valeur de QTC.

Dans la réalité pour un seul et même haut-parleur les courbes de réponse se déplacent vers la droite du graphique quand le QTC augmente. En effet, voir formule, la fréquence de résonance FC augmente avec QTC (courbe 2).

Tableau général pour quelques valeurs de QTC

Paramètre unité Q < 20.5/2 Q > 20.5/2        
QTC   0,50 0,71 1,00 1,10 1,41 2,00
F-3dB / FC   1,554 1,000 0,786 0,757 0,707 0,674
Réponse à FC dB -6,00 -3,00 0,00 0,20 3,00 6,00
Pic dB dB Non Non 1,25 1,83 3,59 6,30
fpic/FC   Non Non 1,41 1,31 1,15 1,07

image56.gif


Courbe N°2

Toutes les courbes en fonction de QTC ont été tracée pour un seul et même haut-parleur dont la fréquence de résonance est de FR =25hz et le QTS de 0,36. Par rapport au graphique précédent , on voit bien le décalage des courbes vers la droite avec l'augmentation de QTC.

Le tableau ci-dessous résume les valeurs de FC et de F-3dB en fonction du QTC choisi.

QTC Alpha FC F-3dB
0,50 0,9290 34,7 54,0
0,71 2,8580 49,1 49,1
1.00 6,7160 69,4 54,6
1,10 8,3364 76,4 57,8
1,41 14,4321 98,2 69,4
2.00 29,8642 138,9 93,6

Ce tableau est intéressant car il montre bien qu'avec l'augmentation de QTC, il y aussi une augmentation de la fréquence de résonance FC du système : pour QTC = 0,5, on a FC = 34,5 Hz, pour QTC = 2, on a FC = 138,9Hz !

Si on me demandait mon avis, je choisirais pour cet exemple un QTC de 0,5 qui donne une réponse de l'enceinte très voisine de celle du haut-parleur monté dans un écran. Cette valeur correspond à une réponse de type Linkwitz Riley. Cette charge correspond aussi au volume d'enceinte le plus grand.

image57.gif


Courbe N°3

C'est la même chose que la courbe numéro 2, avec un peu plus de réalisme sur les échelles et les plages de QTC.
Le haut-parleur est le BEYMA 10BR60. Fs = 45 Hz, VAS = 47 L, Qts = 0.467, Fs/Qes = 72.1 Hz. C'est un HP qui convient bien en clos.
QTC = 0.500 ==> 343.2 L
QTC = 0.577 ==> 92.4 L
QTC = 0.707 ==> 37.1 L
QTC = 0.800 ==> 24.7 L
QTC = 0.900 ==> 17.6 L
QTC = 1.000 ==> 13.3 L

Si vous coupez les décibels en quatre, c'est la courbe jaune avec un QTC de 0.707 que vous retiendrez pour la réponse à -3 dB.
Si vous intégrez l'énergie totale dans le grave, vous remarquerez que les courbes avec QTC = 0.500 et QTC = 0.577 ont plus de niveau en dessous de -5 dB que la courbe avec un QTC de 0.707.
L'amortissement optimal est obtenu pour le QTC = 0.577, c'est un alignement de BESSEL.

image702.jpg


Avec un QTC élevé : 1.414

Suite à une question posée sur le forum AUDAX, voici la réponse de FORR :

Inspirées par Dada, voici des solutions de filtrage simples et élégantes :
- Vous adoptez comme fréquence de répartition la fréquence de résonance FC du HP dans son enceinte close et ajustez le QTC à 1.414.
Ces corrections sont à effecteur avec le filtre actif dans la voie qui pilote le HP et non pas avec l'égaliseur.

Solution I
- Vous utilisez une égalisation "Bell", Fréquence = FC, Gain = -9.0 dB, Q = 1.414 qui donne une fonction de transfert du HP clos égalisé semblable à celle d'un passe-haut 12 dB/octave, QTC = 0.500.
La réponse du HP ainsi égalisé et filtré sera alors celle d'un 12 dB/octave Linkwitz Riley à FC.

Solution II
- Vous utilisez une égalisation "Bell", Fréquence = FC, Gain = -3.0 dB, Q = 1.414 qui donne une fonction de transfert du HP égalisé semblable
à celle d'un passe-haut 12 dB/octave, QTC = 1.000.
- vous ajoutez en actif un filtre 6 dB/octave à la même fréquence de coupure.
La réponse du HP ainsi égalisé et filtré sera alors celle d'un 18 dB/octave Butterworth à FC.

Solution III
- Vous utilisez une égalisation "Bell", Fréquence = FC, Gain = -6.0 dB, Q = 1.414 qui donne une fonction de transfert du HP clos égalisé semblable à celle d'un passe-haut 12 dB/octave, QTC = 0.707 (Butterworth)
- Vous ajoutez en actif un filtre 12 dB/octave Butterworth à la même fréquence de coupure.
La réponse du Visaton ainsi égalisé et filtré sera alors celle d'un 24 dB/o Linkwitz Riley à FC.

Note très importante :
Les indications de Q varient suivant les constructeurs, la même valeur ne donne pas la même courbe chez XTA que chez Yamaha ou BSS. Ce sont celles utilisées par ces deux dernières marques que j'emploie.
Je n'ai pas pu vérifier si le DCX BEHRINGER s'y conformait.


Domaine d'utilisation d'un haut-parleur :


Avec la Base de Données haut-parleurs :

Vous pouvez vérifier vous même, quelque soit le PC que vous utilisez, le domaine d'utilisation de votre haut-parleur en enceinte close, et de façon plus générale tous les domaines d'utilisation du haut-parleur que vous avez.
Les critères utilisés pour une enceinte close sont :

Choix avec le Fs/Qes Volume exprimé par le QTC
Qts Avis 0.500 0.577 0.707 0.800 0.900 1.000 1.100 1.200 1.300
Fs/Qes < 50 Très bien adapté                  
50 < Fs/Qes < 80 Adapté                  
80 < Fs/Qes < 120 Possible                  
Fs/Qes > 120 Inadapté                  

Ces seuils éviteront bien des déboires aux débutants. Un expert saura quand et pourquoi il peut passer outre.

Vous devez choisir votre haut-parleur en faisant une sélection par la Marque et le Diamètre, par exemple, puis choisir un haut-parleur dans la liste et demander son domaine d'utilisation dans vos conditions d'ampli, de filtre, du nombre, du montage et du branchement du haut-parleur.

Un 1ere tableau vous indique quelle enceinte est adaptée au HP retenu.
Le début du tableau contient les paramètres T&S complet du haut-parleur.

image734.jpg

Un 2eme tableau indique les volumes possibles, fréquence de résonance et fréquence de coupure en fonction du QTC.
La lecture du résultat est très simple :

  • Si c'est vert, c'est OK.
  • Si c'est jaune, c'est possible.
  • Si c'est orange, attention.
  • Si c'est rouge, je vous déconseille.

image735.jpg

image736.jpg

Si vous montez en enceinte close un haut-parleur inadapté, si vous le montez dans un volume trop grand ou trop petit, je n'ai qu'un seul conseil a vous donner : Arrêtez le DIY...


Calcul d'une enceinte close, 1/4 :

Le calcul est fait directement par la base de données du site, vous affiche les tableaux ci-dessus en 3/4 et va jusqu'a l'affichage de la courbe de réponse en 4/4.
N'oubliez pas de rentrer la résistance du filtre passif en 2/4.

Nom de la Marque :
La Référence du haut-parleur contient les caractères :
Diamètre des HP a afficher :
Type des HP a afficher :
Impédance des HP a afficher :
Trié par :


Rechercher les haut-parleurs adaptés à votre enceinte close :

La base de données permet de trouver les haut-parleurs exactement adaptés à votre besoin.
Si votre demande est possible, vous êtes certain de trouver les haut-parleurs qui y répondent.
La recherche multicritères pour enceintes closes est accessible via un micro paiement après une page d'explications détaillées.


Image du formulaire de saisie :
La sélection par la sensibilité calculé, par l'impédance du HP, et le tri par le critère de votre choix, ne sont pas sur cette image.

image760.jpg


Exemple de résultat :
Les données peuvent être triées sur chacun des paramètres, et par défaut sur F3.
Si vous avez besoin d'un tri sur une combinaison de plusieurs paramètres, il suffit de le demander.

image764.jpg


Valid HTML 4.01 Transitional

Merci pour votre visite.

Il y a un savoir vivre élémentaire qui consiste à demander l'autorisation avant de reprendre tout ou partie de ce qui est écrit dans ce chapitre.
Ne pas respecter ce droit élémentaire vous expose à des poursuites sous toutes les formes légales et moins légales.